
Deep Convolutional Neural Networks
for Image Classification

Many slides from Rob Fergus (NYU and Facebook) 



Overview
• Shallow vs. deep architectures
• Background

• Traditional neural networks
• Inspiration from neuroscience

• Stages of CNN architecture
• Visualizing CNNs
• State-of-the-art results
• Packages



Traditional Recognition Approach
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Traditional Recognition Approach
• Features are key to recent progress in recognition
• Multitude of hand-designed features currently in use

• SIFT, HOG, ………….

• Where next? Better classifiers? Or keep building 
more features?

Felzenszwalb,  Girshick, 
McAllester and Ramanan, PAMI 2007

Yan & Huang 
(Winner of PASCAL 2010 classification competition)



What about learning the features?
• Learn a feature hierarchy all the way from pixels to 

classifier

• Each layer extracts features from the output of 
previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3 Simple 
Classifier

Image/ 
Video
Pixels



“Shallow” vs. “deep” architectures
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Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…



Background: Perceptrons
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Inspiration: Neuron cells



Background: Multi-Layer Neural Networks

• Nonlinear classifier
• Training: find network weights w to minimize the error between true 

training labels yi and estimated labels fw(xi):

• Minimization can be done by gradient descent provided f is differentiable
• This training method is called back-propagation
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Hubel/Wiesel Architecture 
• D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 

1981)
• Visual cortex consists of a hierarchy of simple, complex, 

and hyper-complex cells 

Source



Convolutional Neural Networks (CNN, Convnet)
• Neural network with specialized 

connectivity structure
• Stack multiple stages of feature 

extractors
• Higher stages compute more 

global, more invariant features
• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to 
document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.



• Feed-forward feature extraction: 
1. Convolve input with learned filters
2. Non-linearity 
3. Spatial pooling 
4. Normalization

• Supervised training of convolutional 
filters by back-propagating 
classification error

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks (CNN, Convnet)

Feature maps



1. Convolution

• Dependencies are local 
• Translation invariance
• Few parameters (filter weights)
• Stride can be greater than 1 

(faster, less memory) 

Input Feature Map

.

.

.



2. Non-Linearity

• Per-element (independent)
• Options:

• Tanh
• Sigmoid: 1/(1+exp(-x))
• Rectified linear unit  (ReLU)

– Simplifies backpropagation
– Makes learning faster
– Avoids saturation issues
 Preferred option



3. Spatial Pooling
• Sum or max
• Non-overlapping / overlapping regions
• Role of pooling:

• Invariance to small transformations
• Larger receptive fields (see more of input)

Max

Sum



4. Normalization
• Within or across feature maps
• Before or after spatial pooling

Feature Maps
Feature Maps

After Contrast Normalization



Compare: SIFT Descriptor

Apply
oriented filters

Spatial pool 
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unit length
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Pixels

Lowe
[IJCV 2004]



Compare: Spatial Pyramid Matching

Filter with 
Visual Words

Multi-scale
spatial pool 
(Sum) 

Take max VW 
response (L-inf
normalization)

Global 
image 

descriptor

Lazebnik, 
Schmid, 

Ponce 
[CVPR 2006]

SIFT 
features



Convnet Successes

• Handwritten text/digits
• MNIST (0.17% error [Ciresan et al. 2011])
• Arabic & Chinese   [Ciresan et al. 2012]

• Simpler recognition benchmarks
• CIFAR-10 (9.3% error [Wan et al. 2013])
• Traffic sign recognition

– 0.56% error vs 1.16% for humans 
[Ciresan et al. 2011]

• But until recently, less good at more 
complex datasets
• Caltech-101/256 (few training examples) 



ImageNet Challenge 2012

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k 
classes

• Images gathered from Internet

• Human labels via Amazon Turk 

• Challenge: 1.2 million training images, 
1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS 2012



ImageNet Challenge 2012
• Similar framework to LeCun’98 but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS 2012



ImageNet Challenge 2012
Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) – 26.2% error
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Visualizing Convnets

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, 
arXiv preprint, 2013



Layer 1 Filters



Layer 1: Top-9 Patches



Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map 



Layer 2: Top-9 Patches



Layer 3: Top-9 PatchesLayer 3: Top-9 Patches



Layer 3: Top-9 Patches



Layer 4: Top-9 Patches



Layer 4: Top-9 Patches



Layer 5: Top-9 Patches



Layer 5: Top-9 Patches



Evolution of Features During Training



Evolution of Features During Training



Diagnosing Problems
• Visualization of Krizhevsky et al.’s architecture showed some problems 

with layers 1 and 2
• Large stride of 4 used

• Alter architecture: smaller stride & filter size
• Visualizations look better
• Performance improves

Krizhevsky et al. Zeiler and Fergus



Occlusion Experiment

• Mask parts of input with occluding square

• Monitor output



Input image

p(True class) Most probable class



Input image

Total activation in most 
active 5th layer feature map

Other activations from 
same feature map



Input image
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Input image

Total activation in most 
active 5th layer feature map

Other activations from 
same feature map



Input image

p(True class) Most probable class



Input image

Total activation in most 
active 5th layer feature map

Other activations from 
same feature map



ImageNet Classification 2013 Results
http://www.image-net.org/challenges/LSVRC/2013/results.php
Demo: http://www.clarifai.com/
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How important is depth?

Architecture of Krizhevsky et al.
8 layers total
Trained on ImageNet
18.1% top-5 error 

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + 
Pool

Layer 7: Full



How important is depth?

Remove top fully 
connected layer 
• Layer 7

Drop 16 million 
parameters

Only 1.1% drop in 
performance!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + 
Pool



How important is depth?

Remove both fully connected 
layers 
• Layer 6 & 7

Drop ~50 million parameters

5.7% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + 
Pool



How important is depth?

Now try removing upper feature 
extractor layers:
• Layers 3 & 4

Drop ~1 million parameters

3.0% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + 
Pool

Layer 7: Full



How important is depth?

Now try removing upper feature 
extractor layers & fully connected:
• Layers 3, 4, 6 ,7

Now only 4 layers

33.5% drop in performance

Depth of network is key

Input Image

Layer 1: Conv + Pool

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + 
Pool



Tapping off Features at each Layer

Plug features from each layer into linear SVM or soft-max



CNN packages
• Cuda-convnet (Alex Krizhevsky, Google)
• Caffe (Y. Jia, Berkeley)

• Replacement of deprecated Decaf

• Overfeat (NYU)



Using CNN Features on Other Datasets
• Take model trained on, e.g., ImageNet 2012 

training set
• Take outputs of 6th or 7th layer before or after 

nonlinearity
• Classify test set of new dataset
• Optional: fine-tune features and/or classifier 

on new dataset



Results on misc. benchmarks

[1] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, DeCAF: A Deep Convolutional 
Activation Feature for Generic Visual Recognition, arXiv preprint, 2014

[1] SUN 397 dataset (DeCAF)[1] Caltech-101 (30 samples per class)

[2] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, CNN Features off-the-shelf: an Astounding Baseline 
for Recognition, arXiv preprint, 2014

[2] MIT-67 Indoor Scenes dataset 
(OverFeat)[1] Caltech-UCSD Birds (DeCAF)



CNN features for detection

Object detection system overview. Our system (1) takes an input image, (2) extracts 
around 2000 bottom-up region proposals, (3) computes features for each proposal 
using a large convolutional neural network (CNN), and then (4) classifies each region 
using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP) 
of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al. (2013) report 35.1% 
mAP using the same region proposals, but with a spatial pyramid and bag-of-visual-
words approach. The popular deformable part models perform at 33.4%.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate 
Object Detection and Semantic Segmentation, CVPR 2014, to appear. 



CNN features for face verification

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level 
Performance in Face Verification, CVPR 2014, to appear.




